

République du Sénégal

Ministère de l'Education Nationale

COMPOSITION DU 1er SEMESTRE : EPREUVE DE MATHEMATIQUES

Classe de 3^{ième} : Durée : 02 heures

EXERCICE 1: (4 points)

- 1- Recopie puis réponds par vrai ou par faux (2 x 0,5pt)
- a- Si \hat{A} et \hat{B} sont deux angles inscrits, interceptant le même arc de cercle, alors $mes \hat{A} = 2 \times mes \hat{B}$
- b- Si \widehat{M} est un angle inscrit et \widehat{N} un angle au centre interceptant le même arc de cercle, alors $mes \widehat{M} = mes \widehat{N}$
 - 2- Soit C(0;r) et β la mesure d'un angle au centre interceptant un arc \widehat{R} Recopie et complete : $l(AB) = \underbrace{(l pt)}$
 - 3- Soient a, b et c des nombres réels tels que c>0, recopie et complète les pointillés : (4 x 0,5pt)
 - a- $\sqrt{a} \times \sqrt{b} = \sqrt{\dots}$
 - b- $\sqrt{a^2} =$
 - c- |a| = |b| si et seulement si
 - d- L'expression conjuguée de $-a + b\sqrt{c}$ est

EXERCICE II: (5 points). On donne les expressions littérales A et B telles que

$$A = (2x-3)(x-1)+(4x^2-9)$$

$$B = (x-1)(2x+5)-(5x+1)(x-1)$$

- 1- Développe, réduis et ordonne *A* (1 pt)
- 2- Factorise A et B (1 pt) + (1 pt)
- 3- Résous dans IR : (2x-3)(3x+2)=0 (1 pt)
- 4- Résous dans IR : $(-3x+4)(x-1) \le 0$ (1 pt)

EXERCICE III: **(5 points)**. Soient $E = \sqrt{3} + 2$ et $F = \sqrt{3} - 2$

- 1- Calcule E^2 ; F^2 et $E \times F$ (3 x 0,5pt)
- 2- Montre que $\frac{E}{F} + \frac{F}{E}$ est un entier relatif (1pt)
- 3- Etudie le signe de F. (0,5pt)
- 4- On pose $G = \sqrt{7 4\sqrt{3}}$
- a- Ecris G au moyen d'un seul radical (1pt)
- b- Donne un encadrement de G à 10^{-2} près sachant que $1,732 < \sqrt{3} < 1,733$. (*Ipt*)

EXERCICE IV: (6 points)

- 1- Construis le triangle ABC rectangle en A tels que AB = 10cm et AC = 7.5cm (0.5pt)
- 2- Calcule la longueur *BC*

- (1pt)
- 3- Calcule $\cos \widehat{ABC}$. En déduire une mesure de \widehat{ABC} à 10^{-2} près. (0,5pt) + (0,5pt)
- 4- Place le point M sur le segment [AB] tel que $AM = \frac{1}{3} \times AB$ (0,5pt)
- 5- a- Construis la parallèle à (BC) passant par M et coupant la droite (AC) en N. (0,5pt) b-Compare les rapports $\frac{AM}{AB}$ et $\frac{AN}{AC}$ (1pt)
- c- En déduis que $AN = \frac{1}{3} \times AC$ (0,5pt)
- d- Calcule MN (1pt)