

REPUBLIQUE DU SENEGAL Un Peuple – Un But – Une Foi

Ministère De l'Education Nationale

Durée: 03 H

INSPECTION D'ACADEMIE DE DIOURBEL

Centre Régional de Formation des Personnels de l'Education

COMPOSITION STANDARDISEE DU PREMIER SEMESTRE 2017

MATHEMATIQUES (TL)

Exercice 1 (4 points)

On considère la fonction polynôme P définie par : $P(x) = 2x^3 + 5x^2 - 11x - 14$.

- 1. Calculer P(2). puis factoriser P(x). (1pt)
- 2. Résoudre dans IR l'équation P(x) = 0. (1pt)
- 3. Résoudre dans IR l'inéquation P(x) < 0...(1pt)
- 4. Déduire de la question 2. une résolution de l'équation :

$$2(2x-3)^3 + 5(2x-3)^2 - 11(2x-3) - 14 = 0.(1pt)$$

Exercice 2 (7 points)

Soit la fonction h définie par : $h(x) = x^3 - 3x + 2$ de courbe représentative C_h .

- 1. Déterminer le domaine de définition de h, puis calculer les limites en ses bornes. (1.5pt)
- 2. a. Déterminer la fonction dérivée de h. En déduire les sens de variations de h. (1.5pt) b. Dresser le tableau de variations de h. (1pt)
- 3. Calculer h(1), puis factoriser h(x).(1pt)
- 4. Résoudre h(x) = 0. En déduire les points d'intersection de la courbe C_h avec l'axe des abscisses. (1pt)
- 5. Tracer C_h dans un repère orthonormé d'unité 1cm. (1pt)

Problème (9 points)

Soit la fonction f définie par : $f(x) = \frac{x^2 + x - 1}{x + 2}$ de courbe représentative C_f .

- 1. Déterminer le domaine de définition de f , puis calculer les limites aux bornes du domaine. En déduire une asymptote de $\,C_f\,$. (2pt)
- 2. a. Calculer la dérivée f'(x) de f puis étudier son signe . (1.25pt) b. Etablir le tableau de variations de f . (1pt)
- 3. Déterminer les réels a, b et c tels que pour tout $x \ne -2$, $f(x) = ax + b + \frac{c}{x+2}$. (1pt)
- 4. a. En déduire que la droite (Δ) d'équation y = x 1 est une asymptote oblique à la courbe C_f aux voisinages de $+\infty$ et de $-\infty$. (1pt)
- 5. b. Etudier les positions relatives de (Δ) par rapport à C_f . (0,5pt)
- 6. Déterminer les points de rencontre de la courbe C_f avec les axes de coordonnées . (1pt)
- 7. Déterminer l'équation de la tangente (T) à la courbe C_f au point $A(0, -\frac{1}{2})$. (0,5pt)
- 8. Montrer que le point B(-2, -3) est centre de symétrie de la courbe C_f . (0.75pt)