PROPOSITION DE SUJET

BAC BLANC

SERIE L Durée :3 heures

EXERCICE 1 5 points

Le tableau suivant donne l'évolution du nombre de nuitées réservées (en millions) dans les hôtels d'une régions touristique de 1988 à 1997.

Année	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Rang x_i	1	2	3	4	5	6	7	8	9	10
de										
l'année										
Nombre	25,4	26,8	31,1	28	33,2	32	32,2	37,2	39,3	45,7
y_i de										
nuitées										

1) Dans un repère orthogonal, représenter le nuage de points associés à la série double (x_i, y_i)

Indication : graduer l'axe des ordonnées de 25 à 50

- 2)La forme de ce nuage parait-elle justifier un ajustement affine?
- 3)a)Calculer les coordonnées du point moyen G
- b) Calculer le coefficient de corrélation linéaire r entre x et y. Ce résultat confirme –t-il la réponse à la question 2) ?
 - 4)a)Donner une équation de la droite de régression de y en x
 - b) Estimer le nombre de nuitées que l'on peut prévoir pour l'an 2017
 - c)En quelle année le nombre de nuitées atteindra il 70millions?

EXERCICE2 5 points

1) Ecrire les nombres suivant sous la forme aln(b) oû $b \in IN$ et $a \in IR$ (1 pt)

$$A = \ln 3\sqrt{3} - 2\ln(\frac{81}{16}) - 4\ln 4$$

$$B = ln \left(\frac{e^2}{7} \right) - 4ln \sqrt{e} + \sqrt{3} ln \sqrt{7}$$

2) Déterminer les domaines de définition de f et g définies sur R par :

$$f(x) = \ln\left(\frac{4-x^2}{x+2}\right)$$
 et $g(x) = \ln\left(4x^2 - 3x - 1\right) + \ln(2-x)$

3-Résoudre dans IR :

a)
$$ln(x+2) - ln(x-2) = 1$$

b)
$$ln(\frac{x+1}{x-1}) = ln(x-3)$$

PROBLEME 10 points

On considère la fonction f définie par $f(x) = \frac{x^2 - x + 1}{x - 1}$

- 1. a. Déterminer l'ensemble de définition D de f.
 - b. Montrer que pour tout x de D, $f(x) = x + \frac{1}{x-1}$ et en déduire que la droite d'équation y = x est asymptote oblique à la courbe (C_f) de f.
- 2. Etudier les limites aux bornes de D et en déduire que la courbe (C_f) admet une asymptote verticale dont on précisera son équation.
- 3. Calculer la dérivée de f, étudier le signe de la dérivée et en déduire les variations de f.
- 4. Déterminer les coordonnées des points d'intersection de (C_f) avec les axes de coordonnées.
- 5. Montrer que le point A(1,1) est centre de symétrie de (C_f) .
- 6. Déterminer une équation de la tangente à (C_f) au point d'abscisse zéro.
- 7. $Tracer(C_f)$